Asian Journal of Biotechnology and Genetic Engineering

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 5 [Issue 2]
  4. Review Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Biochemical and Molecular Insights into Abiotic Stress Tolerance in Plants

  • Rao Saad Rehman
  • Syed Ali Zafar
  • Mujahid Ali
  • Asad Nadeem Pasha
  • Hassan Bashir
  • Muhammad Awais Ashraf
  • Muhammad Usman Yaqoob
  • Mubashar Hussain

Asian Journal of Biotechnology and Genetic Engineering, Page 1-19

Published: 15 April 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signaling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.


Keywords:
  • Stress sensing
  • ROS signaling
  • protein phosphorylation
  • signal transduction
  • transcriptional regulation
  • epigenetic regulation
  • microRNAs
  • splicing
  • Full Article – PDF
  • Review History

How to Cite

Rehman, R. S., Zafar, S. A., Ali, M., Pasha, A. N., Bashir, H., Awais Ashraf, M., Usman Yaqoob, M., & Hussain, M. (2022). Biochemical and Molecular Insights into Abiotic Stress Tolerance in Plants. Asian Journal of Biotechnology and Genetic Engineering, 5(2), 1-19. Retrieved from https://journalajbge.com/index.php/AJBGE/article/view/30117
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GE, Schroeder JI. Genetic strategies for improving crop yields. Nature. 2019;575(7781):109-118.

Zhang H, Zhao Y, Zhu JK. Thriving under stress: how plants balance growth and the stress response. Dev. Cell. 2020;55(5):529-543.

Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313-324.

Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 2021;63(1):53-78.

Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266-269.

Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication. Front. Plant Sci. 2020;1407-1421.

Yang Y, Guo Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018;60(9):796-804.

Zhang J, Li XM, Lin HX, Chong K. Crop improvement through temperature resilience. Annu. Rev. Plant Biol. 2019;70: 753-780.

Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature. 2014;514(7522):367-371.

Jojoa-Cruz S, Saotome K, Murthy SE, Tsui CC, Sansom MS, Patapoutian A, Ward AB. Cryo-EM structure of the mechanically activated ion channel OSCA1. 2. Elife. 2018;7:511-525.

Liu X, Wang J, Sun L. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1. 2. Nat. Commun. 2018;9(1):1-9.

Maity K, Heumann JM, McGrath AP, Kopcho NJ, Hsu PK, Lee CW, Mapes JH, Garza D, Krishnan S, Morgan GP, Hendargo KJ. Cryo-EM structure of OSCA1. 2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl Acad. Sci. USA. 2019;116(28):14309-14318.

Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science. 2015;350(6259):438-441.

Hamilton ES, Haswell ES. The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination. Plant Cell Physiol. 2017;58(7):1222-12237.

Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature. 2019;572(7769):341-346.

Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell. 2014;26(8):3314-3325.

Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol. 2013;163(1):253-562.

Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y, Wang Y. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell. 2019;48(5):697-709.

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 2018;28(5):666-675.

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Durán R, Zhu JK. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA. 2018;115(51):13123-13128.

Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant J. 2002;31(5):629-638.

Cui Y, Lu S, Li Z, Cheng J, Hu P, Zhu T, Wang X, Jin M, Wang X, Li L, Huang S. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 2020;183(4):1794-1808.

Liu Q, Ding Y, Shi Y, Ma L, Wang Y, Song C, Wilkins KA, Davies JM, Knight H, Knight MR, Gong Z. The calcium transporter ANNEXIN1 mediates cold‐induced calcium signaling and freezing tolerance in plants. EMBO J. 2021;40(2):989-999.

Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J. COLD1 confers chilling tolerance in rice. Cell. 2015;160(6):1209-1221.

Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Mol. Plant. 2021;14(2):315-329.

Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow MF. Cold-induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol. Plant. 2020;13(6):894-906.

Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M. Phytochromes function as thermosensors in Arabidopsis. Science. 2016;354(6314): 886-889.

Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ. Phytochrome B integrates light and temperature signals in Arabidopsis. Science. 2016;354(6314):897-900.

Casal JJ, Balasubramanian S. Thermomorphogenesis. Annu. Rev. Plant Biol. 2019;70:321-346.

Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, Kim SB. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature. 2020;585(7824):256-260.

Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta. 2012;1819(2):104-119.

Kumar SV, Wigge PA. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136-147.

McAinsh MR, Pittman JK. Shaping the calcium signature. N. Phytol. 2009;181(2): 275-294.

Martí MC, Stancombe MA, Webb AA. Cell-and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol 2013;163(2):625-634.

Rehman RS, Ali M, Zafar SA, Hussain M, Pasha A, Naveed MS, Ahmad M and Waseem M. Abscisic Acid Mediated Abiotic Stress Tolerance in Plants. Asian J. Res. C. Sci. 2022;7(1):1-17.

Tang RJ, Wang C, Li K, Luan S. The CBL–CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci. 2020;25(6):604-617.

Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA. 2015;112(10):3134-3139.

Kim Y, Park S, Gilmour SJ, Thomashow MF. Roles of CAMTA transcription factors and salicylic acid in configuring the low‐temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 2013;75(3):364-376.

Rehman RS, Zafar SA, Ali M, Pasha AN, Naveed MS, Waseem M and Raza A. CRISPR-Cas Mediated Genome Editing: A Paradigm Shift towards Sustainable Agriculture and Biotechnology. Asian P. Res. J. 2022;9(1):27-49.

Rehman RS, Zafar SA, Ali M, Ahmad M, Pasha AN, Waseem M, Hafeez AH and Raza A. Plant Pan-genomes: A New Frontier in Understanding Genomic Diversity in Plants. J. Adv. Bio. Biotech. 2022;25(1):10-22.

Klingler JP, Batelli G, Zhu JK. ABA receptors: the START of a new paradigm in phytohormone signaling. J. Exp. Bot. 2010;61(12):3199-3210.

Min MK, Choi EH, Kim JA, Yoon IS, Han S, Lee Y, Lee S, Kim BG. Two clade a phosphatase 2Cs expressed in guard cells physically interact with abscisic acid signaling components to induce stomatal closure in rice. Rice. 2019;12(1):1-3.

Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009;583(18):2982-2986.

Sun SJ, Qi GN, Gao QF, Wang HQ, Yao FY, Hussain J, Wang YF. Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice. Planta. 2016;243(2):489-500.

Wang P, Hsu CC, Du Y, Zhu P, Zhao C, Fu X, Zhang C, Paez JS, Macho AP, Tao WA, Zhu JK. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc. Natl Acad. Sci. USA. 2020;117(6):3270-3280.

Wu Q, Wang M, Shen J, Chen D, Zheng Y, Zhang W. ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses. J. Integr. Plant Biol. 2019;61(4):478-491.

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324(5930):1064-1068.

Rehman RS, Pasha AN, Zafar SA, Ali M, Waseem M, Ahmad M, Ahmad N, Hafeez AH. Chromosomal Engineering through CRISPR–. Cas Technology: A Way Forward. J. Adv. Bio. Biotech. 2022;25(1):34-45.

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020;62(1):25-54.

Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell. 2015;32(3):278-289.

Katsuta S, Masuda G, Bak H, Shinozawa A, Kamiyama Y, Umezawa T, Takezawa D, Yotsui I, Taji T, Sakata Y. Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant J. 2020;103(2):634-644.

Lin Z, Li Y, Zhang Z, Liu X, Hsu CC, Du Y, Sang T, Zhu C, Wang Y, Satheesh V, Pratibha P. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat. Commun. 2020;11(1):1-0.

Soma F, Takahashi F, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat. Commun. 2020;11(1):1-2.

Rehman RS, Ali M, Zafar SA, Ahmad M, Pasha AN, Bashir H, Rashid F and Hussain M. Tapping into the Unsung Potential of CRISPR/CAS Technology in Agriculture. Asian J. Biochem. Gen. Mol. Bio. 2022;10(4): 1-26.

Fàbregas N, Yoshida T, Fernie AR. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat. Commun. 2020;11(1):1-1.

Lin Z, Li Y, Wang Y, Liu X, Ma L, Zhang Z, Mu C, Zhang Y, Peng L, Xie S, Song CP. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 2021;12(1):1-3.

Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJ. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl Acad. Sci. USA. 2007;104(25):10726-10731.

Isner JC, Begum A, Nuehse T, Hetherington AM, Maathuis FJ. KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure. Curr. Biol. 2018;28(3):466-472.

Chen X, Wang T, Rehman AU, Wang Y, Qi J, Li Z, Song C, Wang B, Yang S, Gong Z. Arabidopsis U‐box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor‐like protein kinases LRR1 and KIN7. J. Integr. Plant Biol. 2021;63(3): 494-509.

Yang T, Shad Ali G, Yang L, Du L, Reddy AS, Poovaiah BW. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal. Behav. 2010;5(8):991-4.

Zhao C, Wang P, Si T, Hsu CC, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao WA, Zhu JK. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Deve. Cell. 2017;43(5):618-629.

Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz‐Masia D, Marcote MJ. Identification and characterization of an ABA‐activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 2015;82(2):232-244.

de Zelicourt A, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 2016;21(8):677-685.

Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 2018 Sep;60(9):805-826.

Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu. Rev. Plant Biol. 2016;67:25-53.

Pesaresi P, Kim C. Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling. Plant Cell Rep. 2019;38(7):819-823.

Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell. 2012;24(6):2546-2561.

Wu F, Chi Y, Jiang Z, Xu Y, Xie L, Huang F, Wan D, Ni J, Yuan F, Wu X, Zhang Y. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature. 2020;578(7796): 577-581.

Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Poretsky E, Belknap TF, Waadt R, Alemán F, Schroeder JI. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife. 2015;4:65-78.

Geiger D, Scherzer S, Mumm P, Marten IA, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, Romeis T. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl Acad. Sci. USA. 2010;107(17):8023-8028.

Meinhard M, Rodriguez PL, Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta. 2002;214(5):775-782.

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2009;2(84):45-59.

Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K, Shulaev V. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell. 2013;25(9):3553-3569.

Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S. Orchestrating rapid long‐distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 2017;90(4):698-707.

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl Acad. Sci. USA. 2014;111(17):6497-6502.

Zandalinas SI, Fichman Y, Mittler R. Vascular bundles mediate systemic reactive oxygen signaling during light stress. Plant Cell. 2020;32(11):3425-3435.

Fichman Y, Myers Jr RJ, Grant DG, Mittler R. Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis. Sci. Signal. 2021;14(671):675-689.

Zandalinas SI, Mittler R. Vascular and nonvascular transmission of systemic reactive oxygen signals during wounding and heat stress. Plant Physiol. 2021;186(3):1721-1733.

Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature. 2018;556(7700):235-238.

Dinneny JR. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 2019;35:239-57.

Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering how auxin optimizes root systems architecture in response to environmental stresses. Cold Spring Harb. Perspect. Biol. 2021;13(11):876-889.

Hua J. From freezing to scorching, transcriptional responses to temperature variations in plants. Curr. Opin. Plant Biol. 2009;12(5):568-573.

Jacob P, Hirt H, Bendahmane A. The heat‐shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 2017;15(4):405-414.

Ma S, Bohnert HJ. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 2007;8(4):1-22.

Zhu JK. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002;53(1):247-273.

Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi‐Shinozaki K. Interaction between two cis‐acting elements, ABRE and DRE, in ABA‐dependent expression of Arabidopsis rd29A gene in response to dehydration and high‐salinity stresses. Plant J. 2003;34(2):137-148.

Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006;57:781-803.

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10(8):1391-1406.

Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA. 1997;94(3):1035-1040.

Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 1998;250(1):161-170.

Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002;130(2):639-648.

Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol. Biol. 2000;42(4):657-665.

Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002;14(8):1675-1690.

Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002;130(4):2129-2141.

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high‐salinity stresses using a full‐length cDNA microarray. Plant J. 2002;31(3):279-292.

Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444-451.

Tang K, Zhao L, Ren Y, Yang S, Zhu JK, Zhao C. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. J. Integr. Plant Biol. 2020;62(3):258-263.

Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. 1999;50(1):571-599.

Medina J, Catalá R, Salinas J. The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci. 2011;180(1):3-11.

Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 2009;60(4):575-588.

Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E. Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J. 2010;61(1):25-35.

Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D. What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol. 2014;165(2):519-527.

Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L. Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol. 2003;133(4):1702-1716.

Hugouvieux V, Kwak JM, Schroeder JI. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell. 2001;106(4):477-487.

Okamoto M, Matsui A, Tanaka M, Morosawa T, Ishida J, Iida K, Mochizuki Y, Toyoda T, Seki M. Sm-like protein-mediated RNA metabolism is required for heat stress tolerance in Arabidopsis. Front. Plant Sci. 2016 Jul 21;7:1079.

Wu SJ, Wang LC, Yeh CH, Lu CA, Wu SJ. Isolation and characterization of the Arabidopsis heat‐intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. N. Phytol. 2010;186(4):833-842.

Zhan X, Qian B, Cao F, Wu W, Yang L, Guan Q, Gu X, Wang P, Okusolubo TA, Dunn SL, Zhu JK. An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nat. Commun. 2015;6(1):1-2.

Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl Acad. Sci. USA. 2002;99(17):11507-11512.

Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell. 2013;25(1):342-356.

Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress. Plant Physiol. 2020;182(1):255-271.

Wang B, Chai H, Zhong Y, Shen Y, Yang W, Chen J, Xin Z, Shi H. The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing. J. Exp. Bot. 2020;71(4):1598-1613.

Ling Y, Alshareef S, Butt H, Lozano‐Juste J, Li L, Galal AA, Moustafa A, Momin AA, Tashkandi M, Richardson DN, Fujii H. Pre‐mRNA splicing repression triggers abiotic stress signaling in plants. Plant J. 2017;89(2):291-309.

Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012;22(6):1184-1195.

Ding F, Cui P, Wang Z, Zhang S, Ali S, Xiong L. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics. 2014;15(1):1-4.

Li Y, Mi X, Zhao S, Zhu J, Guo R, Xia X, Liu L, Liu S, Wei C. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics. 2020;21(1):1-6.

Wang Z, Ji H, Yuan B, Wang S, Su C, Yao B, Zhao H, Li X. ABA signaling is fine-tuned by antagonistic HAB1 variants. Nat. Commun. 2015;6(1):1-2.

Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu JK, Xiong L, Zhu J, Wang ZY. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res. 2018;46(4):1777-1792.

Chong GL, Foo MH, Lin WD, Wong MM, Verslues PE. Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proc. Natl Acad. Sci. USA. 2019;116(44):22376-22385.

Chakrabarti M, de Lorenzo L, Abdel‐Ghany SE, Reddy AS, Hunt AG. Wide‐ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum. Plant J. 2020;102(5):916-930.

Telléz‐Robledo B, Manzano C, Saez A, Navarro‐Neila S, Silva‐Navas J, de Lorenzo L, González‐García MP, Toribio R, Hunt AG, Baigorri R, Casimiro I. The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses. Plant J. 2019;99(6):1203-1219.

Ye C, Zhou Q, Wu X, Ji G, Li QQ. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice. Ecotoxicol. Environ. Saf. 2019;183:1094-1109.

Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25(7):2383-2399.

Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007;12(7):301-309.

Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18(8):2051-2065.

Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. MiR319 mediated salt tolerance by ethylene. Plant Biotechnol. J. 2019;17(12):2370-2383.

Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161(3):1375-1391.

Yang C, Li D, Mao D, Liu XU, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L. Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Env. 2013;36(12):2207-2218.

Merret R, Nagarajan VK, Carpentier MC, Park S, Favory JJ, Descombin J, Picart C, Charng YY, Green PJ, Deragon JM, Bousquet-Antonelli C. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res. 2015;43(8):4121-4132.

Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY, Deragon JM, Bousquet-Antonelli C. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Rep. 2013;5(5):1279-1293.

Nguyen AH, Matsui A, Tanaka M, Mizunashi K, Nakaminami K, Hayashi M, Iida K, Toyoda T, Nguyen DV, Seki M. Loss of Arabidopsis 5′–3′ exoribonuclease AtXRN4 function enhances heat stress tolerance of plants subjected to severe heat stress. Plant Cell Physiol. 2015;56(9):1762-1672.

Merret R, Carpentier MC, Favory JJ, Picart C, Descombin J, Bousquet-Antonelli C, Tillard P, Lejay L, Deragon JM, Charng YY. Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiol. 2017;174(2):1216-1225.

Zhang L, Liu X, Gaikwad K, Kou X, Wang F, Tian X, Xin M, Ni Z, Sun Q, Peng H, Vierling E. Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in Arabidopsis thaliana. Plant Cell. 2017;29(8):1952-1969.

Yu H, Kong X, Huang H, Wu W, Park J, Yun DJ, Lee BH, Shi H, Zhu JK. STCH4/REIL2 confers cold stress tolerance in Arabidopsis by promoting rRNA processing and CBF protein translation. Cell Rep. 2020;30(1):229-242.

Wang S, Bai G, Wang S, Yang L, Yang F, Wang Y, Zhu JK, Hua J. Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in Arabidopsis. PLoS Genet. 2016;12(5):1199-1213.

Ding Y, Lv J, Shi Y, Gao J, Hua J, Song C, Gong Z, Yang S. EGR 2 phosphatase regulates OST 1 kinase activity and freezing tolerance in Arabidopsis. EMBO J. 2019;38(1):1019-1031..

Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg‐Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses. Plant J. 2007;50(2):347-363.

Willems P, Horne A, Van Parys T, Goormachtig S, De Smet I, Botzki A, Van Breusegem F, Gevaert K. The Plant PTM Viewer, a central resource for exploring plant protein modifications. Plant J. 2019;99(4):752-762.

Feng J, Chen L, Zuo J. Protein S‐nitrosylation in plants: current progresses and challenges. J. Integr. Plant Biol. 2019;61(12):1206-1223.

Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. J. Exp. Bot. 2021;72(16):5876-5892.

Hu J, Yang H, Mu J, Lu T, Peng J, Deng X, Kong Z, Bao S, Cao X, Zuo J. Nitric oxide regulates protein methylation during stress responses in plants. Mol. Cell. 2017;67(4):702-710.

Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants. Nature reviews Mol. Cell Biol. 2018;19(8):489-506.

Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant Biol. 2020;62(5):563-580.

Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L. Sensing of abiotic stress and ionic stress responses in plants. Plant Abiotic Stress. 2018;19(11):329-345.

Khan AR, Enjalbert J, Marsollier AC, Rousselet A, Goldringer I, Vitte C. Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 2013;13(1):1-6.

Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J. Exp. Bot. 2015;66(19):5997-6008.

Yong-Villalobos L, González-Morales SI, Wrobel K, Gutiérrez-Alanis D, Cervantes-Peréz SA, Hayano-Kanashiro C, Oropeza-Aburto A, Cruz-Ramírez A, Martínez O, Herrera-Estrella L. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc. Natl Acad. Sci. USA. 2015;112(52):293-302.

Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol. 2011;52(1):149-161.

Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou DX, Ni Z, Sun Q. Histone acetyltransferase GCN 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J. 2019;97(3):587-602.

Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman AU, He J, Zhang J, Hua D, Yang L, Wang L. The Arabidopsis nodulin homeobox factor atndx interacts with AtRING1A/B and negatively regulates abscisic acid signaling. Plant Cell. 2020;32(3):703-721.

Zhang B, Tieman DM, Jiao C, Xu Y, Chen K, Fei Z, Giovannoni JJ, Klee HJ. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl Acad. Sci. USA. 2016;113(44):12580-12585.

Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153(1):193-205.

Vaillant I, Schubert I, Tourmente S, Mathieu O. MOM1 mediates DNA‐methylation‐independent silencing of repetitive sequences in Arabidopsis. EMBO Rep. 2006;7(12):1273-1278.

Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc. Natl Acad. Sci. USA. 2014;111(23):8547-8552.

Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 2014;24(11):1821-1829.

Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol. Plant. 2010;3(3):594-602.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. 2016;5:786-799.

Sanchez DH, Paszkowski J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genet. 2014;10(11):189-199.

Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N. Insights into the maize pan-genome and pan-transcriptome. Plant Cell. 2014;26(1):121-135.

Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X. Pan-genome of wild and cultivated soybeans. Cell. 2020;182(1):162-176.

Qin P, Lu H, Du H, Wang H, Chen W, Chen Z, He Q, Ou S, Zhang H, Li X, Li X. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell. 2021;184(13):3542-3558.

Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 2012;30(4):360-364.

Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 2005;37(10):1141-1146.

Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. N. Phytol. 2018;217(3):1161-1176.

Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Genet. 2015;47(7):827-833.

Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO J. 2020;39(10):1123-1134.

Wang Z, Hong Y, Li Y, Shi H, Yao J, Liu X, Wang F, Huang S, Zhu G, Zhu JK. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnol. J. 2021;19(1):20-35.

Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LS, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 2015;6(1):1-3.

Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016;48(10):1233-1241.

Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol. Biochem. 2011;49(12):1384-1391.

Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol. Lett. 2011;33(8):1689-1697.

Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla‐Pareek SL. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Env. 2018;41(5):1186-1200.

Zhang J, Zhang H, Srivastava AK, Pan Y, Bai J, Fang J, Shi H, Zhu JK. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol. 2018;176(3):2082-2094.

Waltz E. Beating the heat. Nat. Biotechnol. 2014;32(7):610.

Simmons CR, Lafitte HR, Reimann KS, Brugière N, Roesler K, Albertsen MC, Greene TW, Habben JE. Successes and insights of an industry biotech program to enhance maize agronomic traits. Plant Sci. 2021;307:1123-1134.

Lou D, Wang H, Yu D. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol. 2018;18(1):1-7.

Lu Y, Tian Y, Shen R, Yao Q, Wang M, Chen M, Dong J, Zhang T, Li F, Lei M, Zhu JK. Targeted, efficient sequence insertion and replacement in rice. Nat. Biotechnol. 2020;38(12):1402-1407.

Wang M, Wang Z, Mao Y, Lu Y, Yang R, Tao X, Zhu JK. Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant Biotechnol. J. 2019;17(9):1697-1699.

Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. J. Integr. Plant Biol. 2021;63(1):3-3.

Zhu H, Li C, Gao C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020;21(11):661-677.

Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J. 2011;9(2):230-249.

Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta. 2014;239(1):47-60.

Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell. 2018;69(1):100-112.

Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. TOR signaling and nutrient sensing. Annu. Rev. Plant Biol. 2016;67:261-285.

Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, Pan S, Dong R, Tang G, de Dios Barajas-Lopez J, Fujii H. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl Acad. Sci. USA. 2014;111(26):9651-9656.

Li J, Zhou H, Zhang Y, Li Z, Yang Y, Guo Y. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev. Cell. 2020;55(3):367-380.

Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 2020;32(2):295-318.

Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, Sadanandom A. SUMO conjugation to BZR1 enables brassinosteroid signaling to integrate environmental cues to shape plant growth. Curr. Biol. 2020;30(8):1410-1423.

Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant. 2018; 11(2):315-325.

Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Deng P. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res. 2013;23(8):1043-1054.

Singh R, Bhardwaj VK, Sharma J, Purohit R. Identification of novel and selective agonists for ABA receptor PYL3. Plant Physiol. Biochem. 2020;154:387-395.

Vaidya AS, Helander JD, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing Z, Mega R, Takeuchi J, Khanderahoo B. Dynamic control of plant water use using designed ABA receptor agonists. Science. 2019;366(6464):884-899.

Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, Wang WL, Zeng A, Zhao CZ, Si T, Du J, Wu WW. Combining chemical and genetic approaches to increase drought resistance in plants. Nat. Commun. 2017;8(1):1-2.

Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu. Rev. Phytopathol. 2015;53:403-424.

Vílchez JI, Yang Y, He D, Zi H, Peng L, Lv S, Kaushal R, Wang W, Huang W, Liu R, Lang Z. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat. Plants. 2020;6(8):983-995.

Liu XM, Zhang H. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front. Plant Sci. 2015;6:774-777.

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009;63:541-556.

Chen K, Gao J, Sun S, Zhang Z, Yu B, Li J, Xie C, Li G, Wang P, Song CP, Bressan RA. BONZAI proteins control global osmotic stress responses in plants. Curr. Biol. 2020;30(24):4815-4825.

Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev. Cell. 2017;43(5):630-642.

Ding Y, Jia Y, Shi Y, Zhang X, Song C, Gong Z, Yang S. OST 1‐mediated BTF 3L phosphorylation positively regulates CBF s during plant cold responses. EMBO J. 2018;37(8):921-943.

Wang X, Ding Y, Li Z, Shi Y, Wang J, Hua J, Gong Z, Zhou JM, Yang S. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. Dev. Cell. 2019;51(2): 222-235.

Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol. Cell. 2017;66(1):117-128.
  • Abstract View: 65 times
    PDF Download: 20 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Journal of Biotechnology and Genetic Engineering. All rights reserved.