Effect of Gibberellic Acid on Seed Germination and Evaluation of Agrobacterium rhizogenes Strains for the Induction of "Hairy Roots" of Phyllanthus niruri Linn. (Phyllantaceae)

Main Article Content

Florent Biduaya Mukeba
Gédéon Ngiala Bongo
Johnny Bopopi Mukoko
Freddy Otono Bulubulu
Myriam Mukadi Ngondo
Paulin Kapepula Mutwale
Odette Ngandu Kabena
Koto-te-Nyiwa Ngbolua

Abstract

Phyllanthus niruri L. is a medicinal plant from tropical regions with great pharmacognosic virtues scientifically proven. It is a rare herbaceous wild species in the dry season. Its use for the pharmaceutical industry requires a regular supply and it is independent of climatic hazards. The main aim to find optimal seed storage conditions with reference to the factors that limit the germination of P. niruri seeds and to promote the emergence of dormancy and germination of P. niruri seeds harvested from different agro-ecological sites in Kinshasa. The results of the present study showed high germination rates with GA3, which significantly influenced the germination of the seeds of Phyllanthus niruri. Seeds stored at laboratory temperature (28°C) had a good germination power than those stored at 4°C. In addition, the germination capacity of seeds stored for 7 days seems to be lower than that of those stored for 14 days. Seeds harvested at low altitude (Kisenso site) gave a higher germination rate than those harvested at high altitude (UPN and CREN-K sites).  However, the late two sites gave almost the same germination rates.

The Agrobacterium rhizogenes strains A4RSpHKN29, LBA 9402 and ATCC 15834 preserved in the Biotechnology Laboratory of CREN-K did not induce the "Hairy roots" of P. niruri after 27 days of culture on MS medium with sucrose but they conserved their plasmids. Nevertheless, some results obtained showed a low production of vitro-plants and transgenic roots (Hairy roots) from caulinary explants.

Keywords:
Phyllanthus niruri L, gibberellic acid, Agrobacterium rhizogenes, plasmids, hairy roots, explants.

Article Details

How to Cite
Mukeba, F. B., Bongo, G. N., Mukoko, J. B., Bulubulu, F. O., Ngondo, M. M., Mutwale, P. K., Kabena, O. N., & Ngbolua, K.- te-N. (2020). Effect of Gibberellic Acid on Seed Germination and Evaluation of Agrobacterium rhizogenes Strains for the Induction of "Hairy Roots" of Phyllanthus niruri Linn. (Phyllantaceae). Asian Journal of Biotechnology and Genetic Engineering, 3(4), 9-23. Retrieved from https://journalajbge.com/index.php/AJBGE/article/view/30086
Section
Original Research Article

References

Sharma P, Parmar J, Verma P, Sharma P Goyal P. Anti-tumor activity of Phyllanthus niruri (a medicinal plant) on chemical-induced skin carcinogenesis in mice,” Asian Pacific Journal of Cancer Prevention. 2009;10(6):1089–1094.

Patel S, Sharma V, Chauhan NS, Thakur M, Dixit VK. Evaluation of hair growth promoting activity of Phyllanthus niruri,” Avicenna Journal of Phytomedicine. 2015; 5(6):512–519.

de Melo MN, Lira Soares LA, Da Costa Porto CR, et al. Spray-dried extract of Phyllanthus niruri L. reduces mucosal damage in rats with intestinal inflammation,” The Journal of Pharmacy and Pharmacology. 2015;67(8):1107–1118.

Mohan M, James P, Valsalan R, Nazeem P. Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase,” Bioinformation. 2015;11(9):426–431.

Giribabu N, Rao PV, Kumar KP, Muniandy S, Rekha SS, Salleh N. Aqueous extract of Phyllanthus niruri leaves displays in vitro antioxidant activity and prevents the elevation of oxidative stress in the kidney of streptozotocin-induced diabetic male rats. Evidence-Based Complementary and Alternative Medicine. 2014;10. Article ID 834815 View at: Publisher Site | Google Scholar

Calixto JB, Santos ARS, Cechinel Filho V, Yunes R. A. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential,” Medicinal Research Reviews, 18(4):225–258.

Markom M, Hasan M, Daud WRW, Singh H, and Jahim J. M., “Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: effects of solvents and extraction methods,” Separation and Purification Technology. 2007;52(3):487–496.

De Araújo Júnior RF, De Souza TP, Pires JGL, et al. A dry extract of Phyllanthus niruri protects normal cells and induces apoptosis in human liver carcinoma cells,” Experimental Biology and Medicine. 2007; 237(11):1281–1288.

Sailaja R, Setty OH. Protective effect of Phyllanthus fraternus against allyl alcohol-induced oxidative stress in liver mitochondria.” Journal of Ethnopharmacology. 2006;105(1-2):201–209.

Lai CH, Fang SH., Rao YK, et al., Inhibition of Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells by Phyllanthus urinaria extracts,” Journal of Ethnopharmacology. 2008;118(3):522–526.

Okoli CO, Obidike IC, Ezike AC, Akah PA, Salawu OA. Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri,” Pharmaceutical Biology. 2011;49(3):248–255.

Londhe JS, TPA Devasagayam, L. Y. Foo, SS Ghaskadbi, “Radioprotective properties of polyphenols from Phyllanthus amarus Linn,” Journal of Radiation Research. 2009;50(4):303–309.

Giri A, Ravinda ST, Dhingra V, Narasu ML. Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemicinin production in Artemisia annua. Current Science. 2011; 81(4):378-382.

Hoefler C, Fleurentin J, Mortier F, Pelt JM. et Guillemain J. Comparative choleretic and hepatoprotective properties of young sprouts and total plant extracts of Rosmarinus officinalis in rats Journal of Ethnopharmacology. 1987;19:133-144.

Lexa A, Fleurentin J, Lehr PR, Mortier F, Pruvost M, et Pelt, J.M. Choleretic and hepatoprotective properties of Eupatorium cannabinum in the rat Planta Medica, 1989;55(2):117-132.

Lanhers MC, Fleurentin J, Cabalion P, Rolland A, Dorfman P, Misslin R, et Pelt J.M. Behavioral effects of Euphorbia hirta L.: sedative and anxiolytic properties Journal of Ethnopharmacology. 1990; 29:189-198

Cimanga RK, Tona L, Luyindula N, Mesia K, Lusakibanza M, Musuamba CT, Apers S, De Bruyne T, Van Miert S, Hernans N, Totte J, Pieters L, Vlietinck AJ. In vitro antiplasmodial activity of callus culture extracts and fractions from fresh apical stems of Phyllanthus niruri L. (Euphorbiaceae): Part 2, Journal of Ethno-Pharmacology. 2004;95:399-404

Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine. 2016;11:37.

Mysterud A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biology. 2006;12:129–142

Cavaliere C. The effects of climate change on medicinal and aromatic plants. The Journal of the American Botanical Council. 81:44–57

Begossi A, Hanazaki N, Tamashiro JY. Medicinal plants in the Atlantic forest (Brazil): knowledge, use, and conservation. Human Ecology. 2002;30:281–299.

Ghimire SSK, McKey D, Aumeeruddy-Thomas Y. Heterogeneity in ethnoecological knowledge and management of medicinal plants in the Himalayas of Nepal: implications for conservation. Ecology and Society. 2005; 9(3):6-24.

Liu M, Song J, Luo K, Lin Y, Liu P, Yao H. Identification of nine common medicinal plants from Artemisia L. by DNA barcoding sequences. Chinese Traditional and Herbal Drugs. 2012;43:1393–1397

Moyo M, Aremu AO, Van Staden J. Medicinal plants: an invaluable, dwindling resource in sub-Saharan Africa. Journal of Ethnopharmacology. 2015;174:595–606.

Sankar Narayan K, Esack ER, Radhapriya P, Gopal VB, Muthu S, Perumal P. Impact of geography on adaptation of Phyllanthus amarus seeds. 3 Biotechnology. 2018;8:1–10

Unander DW, Bryan HH, Lance CJ, Mcmillan RT. Factors affecting germination and stand establishment of Phyllanthus amarus (Euphorbiaceae). Economic Botany. 1995;49:49–55.

Sogut T, Ozturk F. Effects of harvesting time on some yield and quality traits of different maturing potato cultivars. African Journal of Biotechnology. 2011;10:7349–7355

Avhad MR, Marchetti JM. Temperature and pretreatment effects on the drying of Hass avocado seeds. Biomass Bioenergy, 2015;83:467–473

Benech-Arnold RL, Sánchez RA. Seed dormancy: Preharvest sprouting. Encyclopedy of Applied Plant Science; 2017. Available:https://doi.org/10.1016/b978-0-12-394807-6.00084-8

Blackman SA, Obendorf RL, Leopold AC. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology. 1992; 100:225–230

Lahouar A, Marin S, Crespo-Sempere A, Saïd S, Sanchis V. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Revista Argentina Microbiologia. 2016;48:78–85

Lane B, Woloshuk C. Impact of storage environment on the efficacy of hermetic storage bags. Journal of Stored Products Research. 2017;72:83–89

Ellis RH, Hong TD. Temperature sensitivity of the low moisture- content limit to negative seed longevity-moisture content relationships in hermetic storage. Annals of Botany. 2006;97:785–791.

Gambin BL, Borras L. Resource distribution and thetrade-off between seed number and seed weight: a comparison across crop species. Annals Applied Biology. 2006;156:91–102.

Annarao S, Sidhu OP, Roy R, Tuli R, Khetrapal CL. Lipid profiling of developing Jatropha curcas L. seeds using 1H NMR spectroscopy. Bioresource Technology, 2008, 99:9032–9035

Okamoto K, Akazawa T. Enzymic mechanisms of starch breakdown in germinating rice seeds: 7. Amylase formation in the epithelium. Plant Physiology, 1979, 63:336–340

Luyindula N, Tona L, Lukembila S, Tsakala M, Mesia K, Musuamba CT, Cimanga RK, Apers S, De Bruyne T, Pieters T, Vlientick AJ. In vitro antiplasmodial activity of callus culture extracts from fresh apical stems of Phyllanthus niruri L. (Euphorbaceae): Part 1. Pharmaceutical Biology. 2004;42(7):1-7

Kaseke MA. Etude de l’organogénèse in vitro Phyllanthus niruri L. (Phyllanthaceae). Mémoire, Faculté des Sciences Agronomiques, UNIKIN ; 2006.

Kikakedimau N. Production des cals et racines transgéniques de Phyllanthus niruri L et Morinda lucida B. Mémoire D.E.A. Faculté des Sciences. UNIKIN; 2006.

Baketana KP. Etablissement d’un protocole de micropropagation in vitro d’une plante médicinale ; 2008.

Jimenez M, Alvarenga S, Alan E. Establecimiento del protocolo de micropropagación para la planta medicinal Phyllanthus niruri L. (Euphorbiaceae). Technologia en Marcha. 2007;20(2):32-40

Hansen G, Wright MS. Recent advances in the transformation of plants. Trends in Plant Sciences. 1999;4:226–231.

Kim YJ, Wyslouzil BE, Weathers PJ. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular and Developmental Biology – Plant. 2002; 38:1–10

Moss SC, Dowd MK, Triplett BA. Initiation and proliferation of gossypol-production cotton hairy roots. Proc. Beltwide cotton conf, New Orleans, LA. 2005;2042. Available:http://www.coton.org/beltwide

Häkkinen ST, Moyano E, Cusido RM, Palazon J, Pinol TM, Caldentey KMO. Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine -6β-hydroxylase. Journal of Experimental Botany. 2005;56(42):2611-2618.

Hu Zhi-Bi, Du Min. Hairy root and its application in Plant Genetic Engineering. Journal of Integrative Plant Biology, 2006, 48(2):121-127

Augé, R., Vidalie, H., Beauchesne, G., Boccon-gibod, J., Decourtye, L., Digat, B., Galandrin, J.-C., Minier, R., et Morand, J., (1984) : La culture in vitro et ses applications horticoles, éd. Lavoisier, Paris, 145p.

Yin, Y., Zwei, P. Tein.: A simplified, reliable protocol for plasmid DNA sequencing: fast miniprep, denaturation. Nucleic Acids Research, 1993, 21(2) : 361;

Mapatano, M. Germination in vitro et in situ de Phyllanthus niruri L. (Phyllanthaceae). Mémoire, Faculté des Sciences Agronomiques, UNIKIN

Czarnota M (2006). Phyllanthus growing problem in Georgia landscapes, 2009; (770) 228-7398 ([email protected])

Cristaudo A, Catara S, Onofri A. Temperature and storage time strongly affect the germination success of perennial Euphorbia species in Mediterranean regions. Ecology and Evolution, 2019, 10 :1-16