Precision Engineering in Oncology: Advances and Applications of CRISPR Technology in Cancer Modeling Using Murine Models

Oojas Pardeshi *

Nagpur Veterinary College, Nagpur, India and Maharashtra Animal and Fishery Science University, Nagpur, India.

Mohit Mahalle

Nagpur Veterinary College, Nagpur, India and Maharashtra Animal and Fishery Science University, Nagpur, India.

Aditya Mahajan

Nagpur Veterinary College, Nagpur, India and Maharashtra Animal and Fishery Science University, Nagpur, India.

Mayur Patil

Nagpur Veterinary College, Nagpur, India and Maharashtra Animal and Fishery Science University, Nagpur, India.

Yatharth Nandurkar

Nagpur Veterinary College, Nagpur, India and Maharashtra Animal and Fishery Science University, Nagpur, India.

*Author to whom correspondence should be addressed.


Abstract

The innovative CRISPR-Cas9 system, which was awarded the Nobel Prize in Chemistry in 2020, has altered genetic manipulation, allowing researchers to better understand human illnesses. The CRISPR/Cas system, or "genetic scissors," developed by Nobel laureates Emmanuelle Charpentier and Jennifer Doudna, enables flexible and straightforward genome editing [1]. CRISPR/Cas9 has been widely used in cancer research, but it has now been extended to in vivo techniques, improving human disease modelling [2]. Despite advances in cancer therapy, current medications have substantial toxicity and low success rates. Cancer researchers get insight into intricate tumor biology within dynamic physiological systems by using transgenic mice models [3]. Because of the complexities of the cancer genome, which includes multiple mutations, translocations, and chromosomal changes, exact models are required for thorough knowledge. CRISPR-Cas9 and its variations are RNA-guided nucleases that provide diverse and user-friendly platforms for site-specific genome editing, revolutionising gene editing by imitating genetic processes in human cancer cells [4]. CRISPR high throughput genetic screening and barcoding uncover genes associated with treatment resistance, metastasis, and carcinogenesis, allowing the monitoring and research of cancer cell adaptations [5]. This review focuses on how CRISPR-Cas9 has been used to create precise germline and somatic mice models, allowing researchers to better understand the evolution and course of individual tumours [6]. The successes and pitfalls of these techniques are discussed, emphasising their promise for improving functional cancer genomics and altering the landscape of precision cancer therapy. Future CRISPR breakthroughs promise more precise genome editing and complex cancer models, which will help understand tumor progression and design successful therapies.

Keywords: CRISPR-Cas9, In vivo modeling, transgenic mice models, precision cancer therapy, high throughput genetic screening, ethical considerations, tumor evolution, carcinogenesis Pathways, CRISPR barcoding, cancer research


How to Cite

Pardeshi, Oojas, Mohit Mahalle, Aditya Mahajan, Mayur Patil, and Yatharth Nandurkar. 2024. “Precision Engineering in Oncology: Advances and Applications of CRISPR Technology in Cancer Modeling Using Murine Models”. Asian Journal of Biotechnology and Genetic Engineering 7 (2):185-201. https://journalajbge.com/index.php/AJBGE/article/view/136.


References

Isaacson W. The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race, Simon and Schuster (New York, USA); 2021.

Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr. Opin. Genet. Dev. 2002;12:105–110.

Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33: 390–4. DOI:10.1038/nbt.3155

Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516:428–31.

Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M, Steiger K, Heid I, Mueller S, Maresch R, Engleitner T, et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl. Acad. Sci. USA. 2015;112:13982–13987.

Sánchez-Rivera FJ, Papa Giannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi N Subbaraj L, Bronson RT, Xue W, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516:428–431.

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product, J. Bacteriol. 1987;169:5429-5433.

DOI: 10.1128/ jb.169.12.5429-5433.1987

Groenen PM, Bunschoten AE, Van Soolingen D, Van Embden JD. Nature of DNA polymor- phism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method, Mol. Microbiol. 1993;10:1057-1065.

DOI:10.1111/ j.1365-2958.1993.tb00976.x.

Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S, et al. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains, Emerg Infect. Diseases. 1999;5:254-263. DOI: 10.3201/eid0502.990210.

Mojica FJM, Juez G, Rodriguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites, Mol. Microbiol. 1993;9:613-621. DOI: 10.1111/j.1365-2958.1993.tb01721.x

Mojica FJM, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria, Mol. Microbiol. 2000;36:244-246. DOI: 10.1046/j.1365-2958.2000.01838.x

Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J. Mol. Evol. 2005;60:174-182. DOI: 10.1007/ s00239-00 4-00 46-3.

Bolotin A, Quinquis B, Sorokin A, Dusko Eh- rlich S. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology. 2005;151:2551-2561, DOI: 10.1099/ mic.0.280 48-0.

Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies, Microbiology. 2005;151:653-663. DOI: 10.1099/mic.0.27437-0.

Popkov VA, Zorova LD, Korvigo IO, Silachev DN, Jankauskas SS, et al. Do mitochondria have an immune system? Biochemistry (Moscow). 2016;1:1229- 1236. DOI: 10.1134/ S0006297916100217.

Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science. 2008;322:1843-1845. DOI: 10.1126/ science.1165771.

Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems, Mol. Cell. 2015;60:385-397, DOI: 10.1016/j.molcel.2015.10.008.

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha NV, et al. Diversity and evolution of class 2 CRISPR–Cas systems, Nat. Rev. Microbiol. 2017;169-182. DOI: 10.1038 nrmicro.2016.184.

Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science. 2016;353: aaf5573. DOI: 10.1126/ science.aaf5573.

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, et al. RNA targeting with CRIS- PR–Cas13, Nature. 2017;550:280-284.

DOI: 10.1038/nature24049.

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. CRISPR provides acquired resistance against viruses in prokaryotes, Science. 2007; 315:1709-1712.

Flamand MC, Goblet JP, Duc GR, Briquet M, Zoutry M. Sequence and transcription analysis of mitochondrial plasmids isolated from cytoplasmic male-sterile lines of Vicia faba, Plant Mol. Biol. 1992;19:913-923.

Jansen R, Embden JDAV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes, Mol. Microbiol. 2002;43:1565-1575. DOI: 10.1046/j.1365-2958.2002.02839.x

GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of 14. death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388:1459-544.

Van Der Bij GJ, Oosterling SJ, Beelen RHJ, Meijer S, Coffey JC, Van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann. Surg. 2009;249:727–734.

Oh BY, Kim KH, Chung SS, Hong KS, Lee RA. Role of β1-integrin in colorectal cancer: Case-control study. Ann. Coloproctol. 2014;30:61–70.

Knudson AG. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer. 2001;2:157–162.

Sharpless KB, Manetsch R. In situ click chemistry: A powerful means for lead discovery. Expert Opin. Drug Discov. 2006; 1:525–538.

Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer. 2008;8:592–603.

Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat. Rev. Cancer. 2007;7: 645– 658.

Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244:1288– 1292.

Gaj T, Gersbach CA, Barbas CF, Talen ZFN, CRISPR/Cas-based methods for genome engineering.Trends Biotechnol. 2013;7:397–405.

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157:1262–1278.

Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR Cas immunity systems. RNA Biol. 2013;10:726–737.

Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544:101–104.

Burmistrz M, Krakowski K, Krawczyk-Balska A. RNA-targeting CRISPR–cas systems and their applications. Int. J. Mol. Sci. 2020;21:1122.

Dyda F, Hickman AB. Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA. Mob. DNA. 2015;6.

Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genet. Res. Int. 2018; 2018.

Vakulskas CA, Behlke MA. Evaluation and reduction of Crispr off-target cleavage events. Nucleic Acid Ther. 2019;29:167–174.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013;31:827–832.

Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol. J. 2017;15: 917–926.

Jinek M, East A, Cheng A., Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. ELife. 2013;2: e00471.

Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:230–232.

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, et al. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell. 2014; 159:440–455.

Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321–34.

Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380–5.

Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun. 2014;5:3728.

DOI:10.1038/ncomms4728

Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas mediated genome engineering. Nat Protoc.2014;9: 1956–68.

Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc. 2014;9:2493–512.

Gilbert LA, Larson MH, Morsut L, et al. CRISPR- mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154:442–51

Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013;10:977–9.

Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517:5838.

Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647–61

Rusk N. CRISPRs and epigenome editing. Nat Methods 2014;11:28.

Chen B, Huang B. Imaging genomic elements in living cells using CRISPR/Cas9. Methods Enzymol. 2014; 546:337–54.

DOI:10.1016/B978-0- 12-801185-0.00016-7

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. DOI:10.1126/ science.1231143

O’Connell MR, Oakes BL, Sternberg SH, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014;516:263–6.

Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE.;et al. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci. Rep. 2017;7:44775.

Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013;31:839–843.

Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sánchez-Rivera FJ, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 2017, 35, 569–576.

Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo, J.; Pritchard C, Bin Ali R, van Gerwen B, Siteur B, Drenth AP, et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 2016;30:1470–1480.

Chiou S-H, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang C-H, et al. Pancreatic cancer modeling using retrograde viral vector delivery and In vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576–1585.

Dong W, Kantor, B. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses 2021, 13, 1288.

Crystal, R.G. Adenovirus: The First Effective In Vivo Gene Delivery Vector. Hum.Gene Ther. 2014, 25, 3–11.

Cheng, R.; Peng J, Yan Y, Cao P, Wang J, Qiu C, Tang L, Liu D, Tang L, Jin J, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014;588:3954–3958.

Daya S, Berns KI. Gene Therapy Using Adeno-Associated Virus Vectors. Clin. Microbiol. Rev. 2008;21:583–593.

Wu Z, Asokan A, Samulski RJ. Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol. Ther. 2006;14:316–327.

Hendel A, Bak R, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 2015;33:985–989.

Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 2020;11:3232.

Ramakrishna S, Kwaku Dad AB, Beloor J, et al. Gene disruption by cell-penetrating peptide medi- ated delivery of Cas9 protein and guide RNA. Genome Res 2014;24:1020–7.

Li H, Zheng X, Koren V, et al. Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. Int J Pharm 2014;469:206–13.

Boisguerin P, Redt-Clouet C, Franck-Miclo A, et al. Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia-reperfusion injuries In vivo. J Control Release 2011;156:146–53.

Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423– 427.

Wang D, Mou H, Li S, Li Y,Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer EJ et al.: Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther. 2015;26:432-442.

Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B et al.: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391.

O’Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, Simon J, Romesser PB, Leach B, Han T et al.: Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol. 2017;35:577.

Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S et al.: AAV- mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci. 2017;20:1329-1341.

Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sa ́ nchez- Rivera FJ, Lofgren SM, Kuschma T, Hahn SA, Vangala D et al.: Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163.

Ideno N, Yamaguchi H, Okumura T, Huang J, Brun MJ, Ho ML, Suh J, Gupta S, Maitra A, Ghosh B: A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. Lab Invest; 2019.

Maresch R, Mueller S, Veltkamp C, Ollinger R, Friedrich M, Heid I, Steiger K, Weber J, Engleitner T, Barenboim M et al.: Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. 2016;7:10770.

Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, Konukiewitz B, Ollinger R, Zwiebel M, Strong A et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554:62-68.

Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–658.

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32:941–6. DOI:10.1038/nbt.2951

Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O’Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations invivo. Cell Rep. 2015;10:1422–32. DOI:10.1016/j.celrep.2015.02.002

Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 2013;27:260214.

Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell. 2014;25:652–65.

Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 2015;10:833–9.

Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC. Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR.Cas9 nuclease. PLoS Genet. 2015;11:e1004951.

Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41. DOI:10.1093/nar/gkt464

Wang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ, Chen S. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct In vivo screening. Sci. Adv. 2018; 4:eaao5508.

Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences, Nucleic Acids Research. 2014;42(11):7473-85.

Guernet SK, Mungamuri D, Cartier, R. Sachidanandam, A. Jayaprakash, S. Adriouch, et al., CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations, Molecular cell. 2016;63 (3):526-38.

Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 2013;154:1370–1379.

Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 2015;33:139–42.

Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, et al. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. 2015;112:2984–9.

Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10:1116–21.

Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110:15644–9.

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

Baltimore BD, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015; 348:36–8.

Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237– 43, 1 p following 243.

Wang X, Wang Y, Wu X, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 2015;33:175–8.

Roy I, Mitra S, Maitra A, et al. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm. 2003;250:25–33.

Lu QL, Liang HD, Partridge T, et al. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. 2003;10:396– 405.

Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation. 2003;108: 1022–6.

Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R: Editing DNA Methylation in the Mammalian Genome. Cell 2016;167:233-247.

Lei Y, Zhang XT, Su JZ, Jeong M, Gundry MC, Huang YH, Zhou YB, Li W, Goodell MA: Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun. 2017;8:16026

Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, Pedraza L, Koontz M, Seo K, Horlbeck MA: CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol 2020, 21:83.

Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol. 2015;22:169–74.

Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11:198–200.

Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell. 2008; 135:852–64.

Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2014;160: 1246–60.

MacLeod RS, Cawley KM, Gubrij I, Nookaew I, Onal M,O’Brien CA: Effective CRISPR interference of an endogenous gene via a single transgene in mice. Sci Rep. 2019;9:17312.

Isaev AB, Musharova OS, Severinov KV. Microbial arsenal of antiviral defenses. Part I, Biochemistry (Moscow). 2021;86:319-337.

DOI: 10.1134/S0006297921030081.

Horvath P, Barrangou R, Fremaux C, Boyaval P, Romero D. Use of a Cas Gene in Combination with CRISPR Repeats for Modulating Resistance in a Cell. US Patent Application No. PCT/US2006/033167 (initially f iled on 26.08.2005); 2007.

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011; 144:646-674.

Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann. Surg. 2000;232:58–65.

Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, et al. Efficient CRISPR/cas9- mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200:423–30. DOI:10.1534/genetics.115.176594

Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas-based genome editing. Sci Rep. 2015;5:1–8. DOI:10.1038/ srep11315

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High- frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. DOI:10.1038/nbt.2623