A Detailed Analysis of the Consequences of Various Nanoparticles on Growth, Development and Physiological Responses in Plants under Changing Environments

Zabeehullah Burhan

Department of Botany, University of Agriculture Faisalabad, Pakistan.

Sama Usman

Department of Botany, University of Agriculture Faisalabad, Pakistan.

Hina Nazir

Department of Botany, University of Agriculture Faisalabad, Pakistan.

Narmeen Ayesha

Department of Botany, University of Agriculture Faisalabad, Pakistan.

Areej Zubair

Department Natural Sciences and Humanities Department, UET Lahore University, University of Engineering and Technology, New Campus, UET Lahore, Pakistan.

Aliza Fermaish Ali *

Department of Botany, University of Education Lahore, Pakistan.

Saima Nadir Ali

Department of Botany, University of Education Lahore, Pakistan.

Kiran Fatima

Department of Chemistry, University of Agriculture Faisalabad, Pakistan.

*Author to whom correspondence should be addressed.


Abstract

Enhancing plant nutrition without changing soil texture and protecting it from microbial diseases, nano-fertilizers, nano-pesticides, and nano-herbicides are some examples of how nanotechnology is being used in agriculture. So, nanotechnology keeps the soil healthy, which in turn keeps the plant healthy. Nanoparticles (NPs) increase agricultural productivity and production while decreasing chemical runoff and nutrient loss. Concentrations, physiochemical characteristics, and plant species all have a role in how NPs affect plants. There are a number of NPs that affect plant physiology, which in turn increases biomass production and germination rate. Meanwhile, the function of NPs in growth suppression, inhibition of chlorophyll, and photosynthetic efficiency has been extensively studied. To fill this review, we tried to compile studies that looked at NP effects, translocation, and interactions with plants. Also discussed are methods for phytoremediation of polluted soil that make use of NPs in conjunction with one another to promote environmentally responsible farming.

Keywords: Gene expression, nanotechnology, photosynthetic efficiency, phytoremediation, quantum dots


How to Cite

Burhan, Z., Usman , S., Nazir , H., Ayesha, N., Zubair, A., Ali , A. F., Ali , S. N., & Fatima , K. (2024). A Detailed Analysis of the Consequences of Various Nanoparticles on Growth, Development and Physiological Responses in Plants under Changing Environments. Asian Journal of Biotechnology and Genetic Engineering, 7(1), 31–42. Retrieved from https://journalajbge.com/index.php/AJBGE/article/view/122

Downloads

Download data is not yet available.

References

Abu‐Hamdah R, Cho WJ, Cho SJ, Jeremic A, Kelly M, Ilie AE, Jena BP. Regulation of the water channel aquaporin‐1: Isolation and reconstitution of the regulatory complex. Cell Biology International. 2004; 28(1):7-17.

Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) ACS Sustain. Chem. Eng. 2020;7:14580-14590.

Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. Effect of copper oxide nano particle on seed germination of selected crops. Journal of Agricultural Science and Technology. A. 2012;2(6A):815.

Almutairi ZM. Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato ('Solanum lycopersicum'L.) seedlings under salt stress. Plant Omics. 2016; 9(1):106-114.

Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Science of the total environment. 2016;563:956-964.

Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA. Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for cereals Proceedings of the International Conference on Nanomaterials: Applications and Properties. Crimea, Ukraine. 2013;16-21.

Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana International Journal of Molecular Sciences. 2015;24174-24193.

Camara MC, Campos EVR, Monteiro RA, do Espirito Santo Pereira A, de Freitas Proença,PL, & Fraceto LF. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture. Journal of nanobiotechnology. 2019; 17(1):1-19.

Da Costa MVJ, Sharma PK. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110-119.

Das A, Das B. Nanotechnology a potential tool to mitigate abiotic stress in crop plants. Abiotic and biotic stress in plants, Alexandre Bosco de Oliveira, IntechOpen; 2019.

DOI: 10.5772/intechopen. 83562.

De La Torre-Roche, R., Cantu, J., Tamez, C., Zuverza-Mena, N., Hamdi, H., Adisa, I. O., ... & White JC. Seed biofortification by engineered nanomaterials: A pathway to alleviate malnutrition? Journal of Agricultural and Food Chemistry. 2020;68(44):12189-12202.

DeRosa MC, Monreal,C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature nanotechnology. 2010; 5(2):91-91.

Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires AR. Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Science of The Total Environment. 2020;701:134816.

Fleischer A, O'Neill MA, Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology. 1999;121(3):829-838.

Foltête AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Cotelle S. Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental pollution. 2011; 159(10):2515-2522.

Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biological trace element research. 2006;111:239-253.

Hao Y, Zhang Z, Rui Y, Ren JY, Hou TQ, Wu SJ, Liu LM. Effect of different nanoparticles on seed germination and seedling growth in rice Advance Engineering Research. 2016;85:166-173.

Hayes KL, Mui J, Song B, Sani ES, Eisenman SW, Sheffield JB, Kim B. Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions. Science of the Total Environment. 2020;719:137393.

Hossain Z, Mustafa G, Sakata K, Komatsu S. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. Journal of hazardous materials. 2016;304:291-305.

Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS nano. 2020;14(7):7970-7986.

Huang J, Cheng J, Yi J. Impact of silver nanoparticles on marine diatom Skeletonema costatum. Journal of Applied Toxicology. 2016;36(10):1343-1354.

Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F. Effect of silver nanoparticles on growth of wheat under heat stress Iranian Journal of Science & Technology: Sci. 2019;43(2):387-395.

Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Mukherjee A. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic toxicology. 2015;161:154-169.

Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology. 2019;14(6):532-540.

Kaur N, Kaur J, Grewal SK, Singh I. Effect of heat stress on antioxidative defense system and its amelioration by heat acclimation and salicylic acid pre-treatments in three pigeonpea genotypes. Indian Journal of Agricultural Biochemistry. 2019;32(1):106-110.

Ke W, Xiong ZT, Chen S, Chen J. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field site. Environmental and Experimental Botany. 2007;59(1): 59-67.

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019; 12(7):908-931.

Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS nano. 2009;3(10):3221-3227.

Kirschbaum MU. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant physiology. 2011;155(1):117-124.

Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochemical Acta Part A: Molecular and Biomolecular Spectroscopy. 2012; 93:95-99.

Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV. Impact of carbon nanotube exposure to seeds of valuable crops. ACS applied materials & interfaces. 2013;5(16):7965-7973.

Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry: An International Journal. 2010;29(3):669-675.

Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water‐insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal. 2008;27(9):1915-1921.

Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Fashui H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research. 2008;121:69-79.

Liu R, Zhang H, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients. Water, Air, & Soil Pollution. 2016;227:1-14.

Lowry GV, Avellan A, Gilbertson LM. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature nanotechnology. 2019;14(6): 517-522.

Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Gardea-Torresdey JL. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Science of the Total Environment. 2016;569:201-211.

Martinez-Ballesta MC, Chelbi N, Lopez-Zaplana A, Carvajal M. Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport. Plant Physiology and Biochemistry. 2020;146:23-30.

Matorin DN, Todorenko DA, Seifullina NK, Zayadan BK, Rubin AB. Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P 700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology. 2013;82:809-814.

Mittler R. ROS is good. Trends in plant science. 2017;22(1):1-19.

Morteza E, Moaveni P, Farahani HA, Kiyani M. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO 2 spraying at various growth stages. Springer Plus. 2013;2:1-5.

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant science. 2010;179(3):154-163.

Nayan R, Rawat M, Negi B, Pande A, Arora S. Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia. 2016;71(8):896-902.

Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV. Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology. 2011;42:458-463.

Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, Pasqua G. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant cell reports. 2017;36:1917-1928.

Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, Lange CN. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment. 2020;192: 1-14.

Pérez-de-Luque A. Interaction of nanomaterials with plants: What do we need for real applications in agriculture. Frontiers in Environmental Science. 2017;5:12.

Perreault F, Oukarroum A, Pirastru L, Sirois L, Matias WG, Popovic R. Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. Journal of Botany; 2010.

Rai PK, Kumar V, Lee S, Raza N, Kim KH, Ok YS, Tsang DC. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment international. 2018;119:1-19.

Rajput VD, Minkina T, Kumari A, Harish Singh VK, Verma KK, Keswani C. Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants. 2021;10(6):1221.

Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A. Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. Bio Nanoscience. 2018;8: 36-42.

Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Ghazaryan K. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment. 2018;645:1103-1113.

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry. 2011;59(8):3485-3498.

Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and plant sciences: nanoparticles and their impact on plants. 2015;1-17.

Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of hazardous materials. 2017;322:2-16.

Salama HM. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol. 2012; 3(10):190-197.

Schmidt J. Nanoparticle-induced membrane pore formation studied with lipid bilayer arrays. Biophysical Journal. 2015;108(2):344a-345a.

Scott NR. Nanotechnology opportunities in agriculture and food systems. In Biological & Environmental Engineering, Cornell University NSF Nanoscale Science & Engineering Grantees Conference. 2007;5.

Scott NR, Chen H, Cui H. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. Journal of agricultural and food chemistry. 2018; 66(26):6451-6456.

Scrinis G, Lyons K. The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. The International Journal of Sociology of Agriculture and Food. 2007; 15(2):22-44.

Shabnam N, Sharmila P, Pardha-Saradhi P. Impact of ionic and nanoparticle speciation states of silver on light harnessing photosynthetic events in Spirodela polyrhiza. International Journal of Phytoremediation. 2017;19(1):80-86.

Shakiba S, Astete CE, Paudel S, Sabliov CM, Rodrigues DF, Louie SM. Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environmental Science: Nano. 2020;7(1):37-67.

Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Hu T. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology. 2014;8(2):179-188.

Siddiqui MH, Al-Whaibi MH. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences. 2014;21(1):13-17.

Singh A, Singh S, Prasad SM, Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM. Silicon and nanotechnology role in agriculture and future perspective in silicon in plants in advances and future prospects, CRC Press. 2016;392.

Singh J, Lee BK. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of environmental management. 2016;170: 88-96.

Talankova‐Sereda TE, Liapina KV, Shkopinskij EA, Ustinov AI, Kovalyova AV, Dulnev PG, Kucenko NI. The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro Nanosci. Nanoeng. 2016;4:31-39.

Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes -Diaz M, Alberdi M, Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants Plant Physiology & Biochemistry. 2018;130:408-417.

Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L. Borjas García SE Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 2014;4(5):577-591.

Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere. 2019;226: 110-122.

Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, Sahi S. Differential phytotoxic rsponses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene. 2017;11:255-264.

Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Chauhan DK. Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Frontiers in plant science. 2017;8:1.

Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Chauhan DK. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant physiology and biochemistry. 2017;110:2-12.

Tripathi S, Sonkar SK, Sarkar S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale. 2011;3(3):1176-1181.

Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PloS one. 2013;8(7):e68752.

Vinopal S, Ruml T, Kotrba P. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. International Biodeterioration & Biodegradation. 2007; 60(2):96-102.

Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental science & technology. 2012;46(8): 4434-4441.

Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews. 2013;42(14): 6060-6093.

Xie Y, Li B, Zhang Q, Zhang C. Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure J. Nanjing For. Univ. (Nat. Sci. Ed.). 2012;2: 59-63.

Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Yang P. The improvement of spinach growth by nano-anatase TiO 2 treatment is related to nitrogen photoreduction. Biological trace element research. 2007;119:77-88.

Yasmeen F, Razzaq A, Iqbal MN, Jhanzab HM. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci. 2015;6(4):112-117.

Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Gardea-Torresdey JL. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environmental science & technology. 2015;49(5):2921-2928.

Zou X, Li P, Huang Q, Zhang H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquatic Toxicology. 2016;176: 97-105.

Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002 Aug 1;177(1):67-80.

Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of sulphur and heavier chalcogens on the antioxidant power and bioactivity of natural phenolic compounds. Biomolecules. 2022; 12(1):90.

Zhang J, Ma J, Choksi TS, Zhou D, Han S, Liao YF, Yang HB, Liu D, Zeng Z, Liu W, Sun X. Strong metal–support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. Journal of the American Chemical Society. 2022; 144(5):2255-63.

Hanikoglu A, Ozben H, Hanikoglu F, Ozben T. Hybrid compounds & oxidative stress induced apoptosis in cancer therapy. Current medicinal chemistry. 2020; 27(13):2118-32.

Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquatic toxicology. 2016;170: 162-74.

Kumar V, Sharma M, Khare T, Wani SH. Impact of nanoparticles on oxidative stress and responsive antioxidative defense in plants. InNanomaterials in Plants, Algae, and Microorganisms. Academic Press. 2018;393-406.

Oufdou K, Benidire L, Lyubenova L, Daoui K, Fatemi ZE, Schröder P. Enzymes of the glutathione–ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia faba L.) under salinity stress. European journal of soil biology. 2014; 60:98-103.