Applications of Protoplast Fusion in Plant Biotechnology

Gali Adamu Ishaku *

Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Nigeria.

Ayuba Kalum Abaka

Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Nigeria.

Muhammad Akram

Department of Eastern Medicine, Government College University Faisalabad, Pakistan.

Md. Shariful Islam

Department of Pharmacy, Southeast University, Dhaka, Bangladesh.

*Author to whom correspondence should be addressed.


Abstract

Plant biotechnology is the deliberate application of biotechnology tools such as protoplast fusion, DNA extraction, plant bioinformatics, PCR and cloning in creating plants with new, improved and desired traits for human benefits. Protoplasts are often referred to as plant cells which the cell wall has been removed and it has many applications in plant biotechnology. Protoplast fusion has been used for centuries but plant biotechnology is a new technology that gives more realistic results in any plants research. The application of plant biotechnology in protoplast fusion will produce new product in plants with wider applications and more realistic results. In this article different applications of protoplast fusion in plant biotechnology was reviewed such as production of useful metabolites, target site mutagenesis, introduction and establishment of disease resistance plants, improvement of food nutrition content, nitrogen-fixation symbioses, production of herbicide resistant plants, insect pest Control and plant-parasitic nematode control in plant for the benefit of humans. The knowledge of protoplast fusion can be use by plant biotechnologist to improve plants trait for human benefits. The application of plant biotechnology is important to any nation’s food security and development.

Keywords: Disease resistance, food security, gene editing, herbicide resistant, nitrogen-fixing symbioses and nutrition content


How to Cite

Ishaku , Gali Adamu, Ayuba Kalum Abaka, Muhammad Akram, and Md. Shariful Islam. 2023. “Applications of Protoplast Fusion in Plant Biotechnology”. Asian Journal of Biotechnology and Genetic Engineering 6 (2):143-54. https://journalajbge.com/index.php/AJBGE/article/view/109.

Downloads

Download data is not yet available.

References

Johnson A, Veilleux R. Somatic hybridization and application in plant breeding. In: Janick J (ed) Plant Breeding Rev 20. John Wiley & Sons, New York. 2001;167–225.

Davey M, Anthony P, Patel D, Power J. Plant Protoplasts: Isolation, Culture and Plant Regeneration. In: Davey M, Anthony P (eds) Plant cell culture: essential methods. John Wiley & Sons, New York. 2010;153–173.

Grosser J, Calovic M, Louzada E. Protoplast fusion technology— somatic hybridization and cybridization. In: Davey M, Anthony P (eds) Plant cell culture: essential methods. John Wiley & Sons, New Yor. 2010;175–198.

Hawkes JG. The potato: Evolution, biodiversity and genetic resources. Am. J. Pot Res. 1990;67:733–735.

Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods. 2009;5:16.

Lung SC, Yanagisawa M, Chuong SDX. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep. 2011;30(4):473–484.

Eeckhaut T, Lakshmanan SP, Deryckere D, Bockstaele VE, and Huylenbroeck VJ. Progress in plant protoplast research. Planta. 2013;238:991–1003.

Hassanein A, Hamama L, Loridon K, Dorion N. Direct gene transfer study and transgenic plant regeneration after electroporation into mesophyll protoplasts of Pelargonium x hortorum, ‘Panache Sud’. Plant Cell Rep. 2009;28:1521–1530.

Masani MYA, Noll GA, Parveez GKA, Sambanthamurthi R, Prüfer D. Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One. 2014;9(5).

Toppino L, Menella G, Rizza F, D’Alessandro A, Sihachakr D, Rotino GL. ISSR and isozyme characterization of androgenetic dihaploids reveals tetrasomic inheritance in tetraploid somatic hybrids between Solanum melongena and Solanum aethiopicum. Group Gilo. J Hered. 2008;99:304–315.

Sarkar D, Tiwari J, Sharma S, Sharma PS, Gopal J, Singh B, Luthra S, Pandey S, Pattanayak D. Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell Tiss Org. 2011;107:427–440.

Gancle A, Grimplet J, Sauvage F, Ollitrault P, Brillouet J. Predominant expression of diploid mandarin leaf proteome in two citrus mandarin-derived somatic allotetraploid hybrids. J Agr. Food Chem; 2006;54:6212–6218.

Wu S, Wirthensohn M, Hunt P, Gibson J. Sedgley M. High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet. 2008;118:1–14.

Deryckere D, De Keyser E, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E. High-resolution melting analysis as a rapid and highly sensitive method for Cichorium plasmotype characterization. Plant Mol Biol Rep. 2013;31:731–740.

Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M, Borderies G, Bolwell GP. The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics. 2009;9(9):2355-2372.

Cassab GI, Varner JE. Cell wall proteins. Ann. Rev. of Plant Physio. and Plant Mol. Bio. 1988;39(1):321-353.

Bonness MS, Ready MP, Irvin JD, Mabry TJ. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. The Plant Journal. 1994;5(2):173-183.

Fett-Neto AG, Pennington JJ, Di Cosmo F. Effect of white light on taxol and baccatin III accumulation in cell cultures of Taxus cuspidata and Zucc. J. Plant Physiol. 1995;146:584–90.

Emmanuel DB, Gali AI, Peingurta AF, Afolabin SA. Callus Culture for the Production of Therapeutic Compounds. Amer. J. of Plant Bio. 2019;4(4):76-84.

Aoyagi H. Application of plant protoplasts for the production of useful metabolites. Biochemical Engineering Journal. 2011.56(1-2):1-8.

Mera N, Aoyagi H, DiCosmo F, Tanaka H. Production of cell wall accumulative enzymes using immobilized protoplasts of Catharanthus roseus in agarose gel. Biotech. Letters. 2003;25(20);1687-1693.

Bodeutsch T, James E, Lee J. The effect of immobilization on recombinant protein production in plant cell culture. Plant Cell Rep. 2001;20;562–566.

Mera, N, Aoyagi, H, DiCosmo F, Tanaka H. Production of cell wall accumulative enzymes using immobilized protoplasts of Catharanthus roseus in agarose gel. Biotechnology letters. 2003;25(20):1687-1693.

Akimoto C, Aoyagi H, Dicosmo F, Tanaka H. Synergistic effect of active oxygen species and alginate on chitinase production by Wasabia japonica cells and its application. J. of biosci. and bioeng. 2000;89(2):131-137.

Aoyagi H, Sakamoto Y, Asada M, Tanaka H. Indole alkaloids production by Catharanthus roseus protoplasts with artificial cell walls containing of guluronic acid rich alginate gel. Journal of fermentation and bioengineering. 1998;85(3);306-311.

Aoyagi H. Application of plant protoplasts for the production of useful metabolites. Biochem. Eng. J. 2011;56:1–8.

Nekrasov V, Staskawicz B, Weigel D, Jones JDG. Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691-693.

Li JF, Norville JE, Aach J, McCormack M, Zhang DD, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in arabidopsis and nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013;31:688-691.

Gaj T, Gersbach CA. Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397-405.

Feng ZY, Zhang BT, Ding WN, Liu XD, Yang DL, Wei PL, et. al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229-1232.

Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686-688.

Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406.

Endo A, Masafumi M, Kaya H, Toki S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 2016;6:38169.

Xu R, Qin R, Li H, Li D, Li L, Wei P. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J. 2017;15:713-717.

Mahfouz MM. Genome editing: The efficient tool CRISPR-Cpf1. Nat. Plants. 2017;3:17028.

Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015;33:1162-1164.

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleo protein complexes. Nat. Commun. 2017;8:14261.

Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:12617.

Huang S, Weigel D, Beachy RN, Li J. A proposed regulatory framework for genome-edited crops. Nat. Genet. 2016;48,109-11.

Lin C, Hsu C, Yang L, Lee L, Fu J, Cheng Q. et. al., Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single cell mutation detection to mutant plant regeneration. Plant Bio techn. J. 2018;16:1295–1310.

Kusumaningrum HP, Zainuri M. Detection of bacteria and fungi associated with Penaeus monodon postlarvae mortality. Procedia Environmental Sciences. 2015;23:329-337.

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied microb. and biotech. 2004;65(6):635-648.

Mathias D, Hammantola S, Ishaku G. Isolation and characterization of bioflocculant-producing bacteria from wastewater at Jimeta, Adamawa State, J. Adv. Biol. Biotech. 2017:15(1):1–7.

Adebiyi A, Bassey EE, Ayo R, Bello I, Habila J, Ishaku GA. Anti-mycobacterial, Antimicrobial and phytochemical evalua-tion of Pulicaria crispa and Scoparia dulcis plant extracts. J. of Adv. in Medical and Pharm. Sci. 2016;7(4):1-11.

Njobdi S, Gambo M, Gali AI. Antibacterial Activity of Zingiber officinale on Escherichia coli and Staphylococcus aureus. J. of Adv. in Bio. and Biotech. 2018;19(1):1-8.

Sukorno IF, Islam S, Kabir LA, de la Cruz VC, Zaman S, Gali AI. Phytochemicals are natural resources of food supplement for happier people. Horticult Int J. 2019;3(6):300‒305

Lee YK, Tan HM. Interphylum protoplast fusion and genetic recombination of the algae Porphyridium cruentum and Dunaliella spp. Microbiology. 1988;134(3):635-641.

Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Biores. Tech. 2010;101(8):2623-2628.

Lu Y, Kong R, Hu L. Preparation of protoplasts from Chlorella protothecoides. World Journal of Microbiology and Biotechnology. 2012;28(4):1827-1830.

Kusumaningrum HP, Zainuri M. The natural wealthy carotenoid feed application for post larvae Penaeus monodon Fab. I J Ilmu Kelautan. 2013;18:143-149.

Kusumaningrum HP, Zainuri M, Improvement of Nutrition Production by Protoplast Fusion Techniques in Chlorella vulgaris. J Food Process Technol. 2018;9:711.

Kneip C, Lockhart P, VoB C and Maier U. Nitrogen fixation in eukaryotes – New models for symbiosis BMC evolutionary biology. 2007;7:55.

Johansson C, Bergman B. Early events during the establishment of the Gunnera/Nostoscy mbiosis. Planta. 1992;188:403-413.

MacLean MA, Finan MT, Sadowsky JM. Genomes of the Symbiotic Nitrogen-Fixing Bacteria of Legumes. Plant Physio. 2007;144:615–622.

Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y. et al. The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant Cell Physiol. 2012;53(1):225–236.

Laporte P, Satiat-Jeunemaıˆtre B, Velasco I, Csorba T, Van de Velde W, Campalans A et. al. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula–Sinorhizobium meliloti nitrogen-fixing symbiosis. The Plant Journal. 2010;62:24–38.

Normand P, Lapierre P, Tisa LS, Gogarten PJ, Alloisio N, Bagnarol E. et. al., Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Research. 2007;17:7–15.

MacNeil T, MacNeil D, Roberts GP, Supaino MA, Brill N J: Fine-structure mapping and complementation analysis of nif (nitrogen fixation) genes in Klebsiella pneumoniae. J Bacteriol. 1978;136:253-266.

Dixon RA, Postgate JR. Genetic transfer of nitrogen fixation from Klebsiella pneum oniae to Escherich ia coli. Nature. 1972;237:102-103.

Krishnapillai V, Postgate JR. Expression of Klebsiella his and nif genes in Serratia marcescens, Erwinia herbicola and Proteus mirabilis. Arch. Microbiol. 1980;127:115-118.

Zamir A, Mainn CV, Fink GR, Szalay AA: Stable chromosomal integration of the entire nitrogen fixation gene cluster from Klebsiellapneumoniae in yeast. Proc Natl Acad Sci USA. 1981;78:3496-3500.

Prakash RK, Cummings B. Creation of novel nitrogen-fixing actinomycetes by protoplast fusion of Frankia with streptomyces. Plant mol. bio. 1988;10(3):281-289.

Louis ST, Ensign JC. Formation and regeneration of protoplasts of the actinorhizal nitrogen-fixing actinomycete frankia. Applied And Environmental Microbiology. 1987;53(1)53-56.

Sabir MS J, El-Bestawy E. Enhancement of nodulation by some arid climate strains of Rhizobium leguminosarum biovar trifolii using protoplast fusion. World J Micro. Biotech. 2009;25:545–552.

Dent D, Cocking E. Establishing symbiotic nitrogen fixation in cereals and other non legume crops: The Greener Nitrogen Revolution. Agric & Food Secur. 2017;6:7.

Oxtoby E, Monica A. Hughes Breeding for herbicide resistance using molecular and cellular techniques. Euphytica. 1989;40: 173-180.

Botterman J, Leemans J. Engineering of Herbicide Resistance in Plants, Biotech. and Genetic Engin. Reviews. 1988;6(1):321-340.

Rathore SK, Chowdhury KV, Hodges KT. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol. Bio. 1993;21:871-884.

Menczel L, Polsby SL, Steinbaek EK, Maliga P. Fusion-mediated transfer of triazine-resistant chloroplasts: Characterization of Nicotiana tabacum cybrid plants. Mol. Gen. Genet. 1986;205:201-205.

Datta KS, Datta KK, Soltanifar N, Donn G, Potrykus I. Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol. Bio. 1992;20:619-629.

Chen Q, Li HY, Shi YZ, Beasley D, Bizimungu B, Goettel MS. Development of an effective protoplast fusion system for production of new potatoes with disease and insect resistance using Mexican wild potato species as gene pools. Can. J. Plant Sci. 2008;88:611-619.

Harms, CT. Hybridization By Somatic Cell Fusion. In Plant Protoplasts, Fowke LC. And Constabel F. Eds. CRC. Press, Boca Raton,New York, 1985;169

Dambier D, Benyahia H, Pensabene-Bellavia G, Kacar Y, Froelicher Y, Belfalah Z. Somatic hybridization for Citrus rootstock breeding: An effective tool to solve some important issues of the Mediterranean Citrus industry. Plant Cell Rep. 2011;30:883–900.

Soriano L, Assis F, Camargo L, Cristofani-Yaly M, Rocha R, Andrade C. Regeneration and characterization of somatic hybrids combining sweet orange and mandarin/mandarin hybrid cultivars for citrus scion improvement. Plant Cell Tiss. Org. 2012;111:385–392.

Xiao Z, Wan L, Han B. An interspecific somatic hybrid between Actinidia chinensis and Actinidia kolomikta and its chilling tolerance. Plant Cell Tiss Org. 2004;79:299–306.

Nuss DL. Biological control of chestnut blight: an example of virus mediated attenuation of fungal pathogenesis. Microbiol. Rev. 1992;56:561–576.

Chen B, Chen C-H, Bowman BH, Nuss DL. Phenotypic changes associated with wild-type and mutant hypovirus RNA transfection of plant pathogenic fungi phylogenetically related to Cryphonectria parasitica. Phytopathology. 1996;86:301–310.

Shain L, Miller JB. Movement of cytoplasmic hypovirulence agents in chestnut blight cankers. Can J Bot. 1992;70:557–561.

Lee K, Yu J, Son M, Lee Y, Kim K. Transmission of Fusarium boothii Mycovirus via Protoplast Fusion Causes Hypovirulence in Other Phytopathogenic Fungi. PLoS ONE. 2011;6(6)1-9.

Jaiswal KD, Raju SVS, Kumar S.G, Sharma RK, Singh KD, Vennela RP. Biotechnology in Plant Resistance to Insects. Indian Journal of Agriculture and Allied Sciences. 2018;4(1):1-18.

Goettel SM, Koike M, Kim JJ, Aiuchi D, Shinya R. Brodeur J. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J. of Invertebrate. Path. 2008;98:256–261.

Aiuchi D, Inami K, Sugimoto M, Shinya R, Tani M, Kuramochi K, Koike M. A new method for producing hybrid strains of the entomopathogenic fungus Verticillium lecanii (Lecanicillium spp.) through protoplast fusion by using nitrate non-utilizing (nit) mutants. Micol. Apl. Int. 2008;20:1–16.

Schnepf HE, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol.Biol. Rev. 1998;62:775–806.

Feitelson JS. The Bacillus thuringiensis family tree. In Advanced engineered pesticides. Edited by L. Kim. Marcel Dekker, Inc., New York, USA. 1993:63–71.

El-Kawokgy AMT, Hussein AH, Aly HAN, Mohamed HAS. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion. Can. J. Microbiol. 2015;61:1–10.

Sijmons, PC, Atkinson HJ, Wyss U. Parasitic strategies of root nematodes and associated host cell responses. Annu. Rev. Phytopathol. 1994;32,235–259.

de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL, Jr Inze´ D, Van Montagu M, Engler G, Gheysen G. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell. 1999;11:793–807.

Decraemer W, and Hunt DJ. Structure and classification. In: Plant Nematology (Perry, R.N. and Moens, M., eds. Wallingford, Oxfordshire: CAB International. 2006;3–32.

Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT. Current nematode threats to world agriculture. In: Genomics and Molecular Genetics of Plant–Nematode Interactions (Jones JT, Gheysen G. and Fenoll C., eds). Heidelberg: Springer. 2011;21–44.

Saharan BS, Nehra V. Plant growth promoting Rhizobacteria: A critical review. Life Sciences and Medicine Research: LSMR-21. 2011;1–30.

Abdel-Salam MS, Ameen HH, Soliman MG, Elkelany SU, Asar MA. Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egyptian J. of Bio. Pest Control. 2018;28:31.

Hall RA. The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Microbial Control of Pests and Plant Disease. (Burges, H. ed.), Academic Press, London. 1981;483-498.

Meyer SLF, Huettel RN, Sayre RM. Isolation of fungi from Heterodera glycines and in vitro bioassays for their antagonism to eggs. Journal of Nematology. 1990;22:532-537.

Shinya R, Watanabe A, Aiuchi D, Tani M, Kuramochi K, Kushida A, Koike M. Potential of Verticillium lecanii (Lecanicillium spp.) hybrid strains as biological control agents for soybean cyst nematode: Is protoplast fusion an effective tool for development of plant-parasitic nematode control agents?. 2008;38(1):9-18.

Grosser J, Gmitter F. Applications of somatic hybridization and cybridization in crop improvement, with Citrus as a model. In Vitro Cell Dev Plant. 2005;41:220–225.

Thieme R, Darsow U, Rakosy-Tican L, Kang Z, Gavrilenko T, Antonova O, Heimbach U, Thieme T. Use of somatic hybridization to transfer resistance to late blight and potato virus Y (PVY) into cultivated potato. Plant Breed Seed Sci. 2004;50:113–118.

Wang J, Jiang J, Wang Y. Protoplast fusion for crop improvement and breeding in China. Plant Cell Tiss Org. 2013;112:131–142.

Kao KN, Constabel F, Michayluk MR, Gamborg OL. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta (Berl.). 1974;120:215-227.

Matthew SG, Philip M. Lintilhac Microbead encapsulation of living plant protoplasts: A new tool for the handling of single plant cells. Appli. in Plant Sci. 2016;4(5):1500140.

Miiller-Gensert E, Schieder O. Interspecific T-DNA transfer through plant protoplast fusion. Mol Gen Genet. 1987;208:235-241.

Grosser JW, Gmitter GF Jr. Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus. Plant. Cell. Tiss. Organ. Cult. 2011;104:343–357.

Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59.