Nutritional Composition, Phytochemistry, and In vivo Potentials of Thaumatococcus daniellii (Benn.) Rhizome Extracts

Ogunrinola O. Olabisi *

Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.

Ogunrinola A. Oluwaseyi

Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria and School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

Adu B. Oluwatosin

Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.

Elemo O. Babajide

Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

The evidence on the advantages of plant rhizomes remains sparse. Proximate analysis, phytochemical screening (qualitative and quantitative), and lethal dose investigation of the aqueous and ethanolic extracts of the unpeeled and peeled Thaumatococcus daniellii (Benn.) rhizome (TdR) and their effects in albino rats are presented in this paper. In order to investigate the extract’s effect on albino rats, fifteen animals were divided into five groups (n = 3). Group 1 is the control, and groups 2–5 were orally administered 300 mg/kg body weight of aqueous and ethanolic extracts of unpeeled and peeled TdR for 7 days, respectively. After the experimental period, blood glucose, serum total protein, albumin, globulin, cholesterol, and triglyceride concentrations were determined spectrophotometrically. The qualitative analysis carried out revealed the presence of flavonoids, reducing sugar, free anthraquinones, cardiac glycosides, and glycosides in both aqueous and ethanolic extracts of the unpeeled and peeled rhizomes. The quantitative analysis shows that total phenol has the highest percentage of constituents compared to niacin, flavonoids, and tannins. Both qualitative and quantitative analyses revealed the absence of alkaloids and phlobatannins. The blood glucose concentration was significantly (P≤ .05) decreased in animals administered with all the crude rhizome extracts, while the total serum albumin, globulin, and protein concentrations were significantly (P≤ .05) increased. Likewise, the extracts of the peeled and unpeeled rhizomes caused a significant (P≤ .05) increase in serum cholesterol concentration as well as triglycerides compared to the control. The results revealed that the nutritional composition and phytochemistry of both the aqueous and ethanolic extracts of the unpeeled and peeled TdR rhizome and the administration of 300 mg/kg body weight had significant effects on the biochemical parameters of the rat.

Keywords: Glucose, flavonoids, cholesterol, protein, peeled, unpeeled


How to Cite

Olabisi, Ogunrinola O., Ogunrinola A. Oluwaseyi, Adu B. Oluwatosin, and Elemo O. Babajide. 2023. “Nutritional Composition, Phytochemistry, and In Vivo Potentials of Thaumatococcus Daniellii (Benn.) Rhizome Extracts”. Asian Journal of Biotechnology and Genetic Engineering 6 (2):105-14. https://journalajbge.com/index.php/AJBGE/article/view/105.

Downloads

Download data is not yet available.

References

Fadahunsi O, Adegbola P, Olorunnisola S, Akinloye O. Phytochemistry, nutritional composition, and pharmacological activities of Thaumatococcus daniellii (Benth): A review. BioTechnologia. 2021;102(1):101-17.

DOI:https://doi.org/10.5114/bta.2021.103766

Adu OB, Adeyemo GA, Falua OB, Fajana OO, Ogunrinola OO, Saibu GM, et al. The Effect of Thaumatococcus daniellii leaf extracts on immunological and oxidative stress markers in rat. Asian J. Biochem. Genet. Mol. Biol. 2021;7(4):6-14. DOI:https://doi.org/10.9734/AJBGMB/2021/v7i430179

Chinedu SN, Iheagwam FN, Anichebem CJ, Ogunnaike GB, Emiloju OC. Antioxidant and biochemical evaluation of Thaumatococcus daniellii seeds in rat. J. Bio. Sci. 2017;17(8):381-387. DOI:https://doi.org/10.3923/jbs.2017.381.387

Chinedu SN, Oluwadamisi AY, Popoola ST, David BJ, Epelle T. Analyses of the leaf, fruit and Seed of Thaumatococcus daniellii (Benth.): Exploring potential uses. Pak. J. Biol. Sci. 2014;17(6):849-854.

DOI:https://doi.org/10.3923/pjbs.2014.849.854

Ogoloma UJ, Wegu M, Abbey BN. Phytochemical analysis and effect of methanolic root/leaf extracts of Thaumatococcus danielli on some biochemical parameters in Wistar Rat. Academ. Arena. 2017;9(6):64-74.

DOI:https://doi.org/10.7537/marsaaj090617.10.

Ogoloma UJ, Wegu M, Abbey BN. Haematological effects of methanolic root and leaf extracts of Thaumatococcus danielli in Wistar Rat. Biomed. Nursing. 2017;3(3):42-55. DOI:https://doi.org/10.7537/marsbnj030317.05

Elemo BO, Adu OB, Ogunrinola OO, Efuwape TO, Olaleye KO, Kareem AA. Biological evaluation of Thaumatococcus danielli waste protein. Pak. J. Nutr. 2011; 10:1048-1052.

Elemo BO, Elemo GN, Agboola OO, Oyedun AB. Studies on some anti-nutritive factors and in-vitro protein digestibility of Thaumatococcus danielli (Benth) wastes. Niger. J. Biochem. Mol. Biol. 2001;16:43-46.

Raimi OG, Elemo BO, Fatai AA, Bankole HA, Kazeem MI, Banjoko AO. Isolation and partial characterization of a protease enzyme from Thaumatococcus daniellii waste. African J. Biotech. 2011;10(16): 3186-3190. DOI:http://doi.org/10.5897/AJB10.2065

Ubani CD, Uko OE, Wariso CA, Kalu AA. Evaluation of the nutrient composition and hepatotoxic potential of Thaumatococcus daniellii. GSC Biol. Pharm. Sci. 2022; 18(3):011-015.

DOI:https://doi.org/10.30574/gscbps.2022.18.3.0051

National Institutes of Health, NIH publication. Guide for the care and use of laboratory animals. National Academies Press; 1985.

Taoheed A, Tolulope A, Saidu A, Odewumi O, Sunday R, Usman M. Phytochemical properties, proximate and mineral composition of Curcuma longa Linn. and Zingiber officinale Rosc.: A comparative study. J. Scientific Res. Reports. 2017; 13(4):1-7. DOI:https://doi.org/10.9734/JSRR/2017/32623

Shalom NC, Franklyn NI, Makinde BT, Thorpe BO, Emiloju OC. Data on in vivo antioxidant, hypolipidemic and hepatoprotective potential of Thaumatococcus daniellii (Benn.) Benth leaves. Data in Brief. 2018;20:364–370.

DOI:https://doi.org/10.1016/j.dib.2018.08.016

Adeogun O, Adekunle A, Ashafa A. Chemical composition, lethality and antifungal activities of the extracts of leaf of Thaumatococcus daniellii against foodborne fungi. Beni-Suef Univ. J. Basic Appl. Sci. 2016;5:356-368.

DOI:https://doi.org/10.1016/j.bjbas.2016.11.006

Olorunnisola OS, Adetutu A, Owoade AO, Okoh OO, Oyewo EB, Adegbola P. Ethno-pharmacological and in-vitro anti-diabetic study of some medicinal plants commonly used in Ogbomoso, South Western Nigeria. J. Appl. Biosci. 2016;105:10064–10084. DOI:http://doi.org/10.4314/jab.v105i1.3

Shalom NC, Adetayo YO, Samuel TP, Bolaji JD, Tamuno E. Analyses of the leaf, fruit and seed of Thaumatococcus daniellii (benth). Exploring potential uses. Pak. J. Biol. Sci. 2014;17(6):849–854. DOI:https://doi.org/10.3923/pjbs.2014.849.854

AOAC (Association of Official Analytical Chemists) Official Methods of Analysis of Association of Analytical Chemists international, 17th ed. Horwitz, W. (ed). Vol I and II. AOAC International Publs, Maryland USA. 2000; Ch. 45: 12-20.

Ogunrinola OO, Odulate JE, Elemo BO. Proximate analysis and pharmacognostical investigation of some medicinal plants: Naudea latifolia; Morinda lucida; Alstonea congensis and Anchornea cordifolia. J. Res. Rev. Sci. 2004;3:190-193.

Kalaichelvi K, Dhivya SM. Phytochemical screening and antibacterial activity of leaf extract of Martynia annua, L. and Premna latifolia, Roxb. J. Med. Plants Studies. 2016;4(4):84-87. ISSN 2320-3862

Ghasemi Pirbalouti A, Siahpoosh A, Setayesh M, Craker L. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in Iran. J. Med. Food. 2014;17(10):1151-1157. DOI:https://doi.org/10.1089/jmf.2013.0057

Iqbal E, Salim KA, Lim LB. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud University-Science. 2015;27(3):224-232. DOI:https://doi.org/10.1016/j.jksus.2015.02.003

Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci. Technol. 2012; 46(2):548-555. DOI:https://doi.org/10.1016/j.lwt.2011.11.009

Lorke D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983;54: 275-287.

Puwastien P, Siong TE, Kantasubrata J, Craven G, Feliciano RR, Judprasong K. Asean Manual of Food Analysis. (1st ed.) Thailand: Institute of Nutrition, Mahidol University. 2011;196.

Ganogpichayagrai A, Suksaard C. Proximate composition, vitamin and mineral composition, antioxidant capacity, and anticancer activity of Acanthopanax trifoliatus. J. Adv. Pharm. Technol. Res. 2020;11(4):179-183. DOI:https://doi.org/10.4103/japtr.JAPTR_61_20

Harris GK, Marshall MR. Ash analysis. Food analysis. 2017;287-297. DOI:https://doi.org/10.1007/978-3-319-45776-5_16

Oduntan AO, Olaleye O, Akinwande BA. Effect of plant maturity on the proximate composition of Sesamum radiatum Schum leaves. J. Food studies. 2012;1(1):69-76. DOI:https://doi.org/10.5296/jfs.v1i1.1806.

Pazhanichamy K, Pavithra S, Rubini S, Lavanya B, Ramya I, Eevera T. Morphological, anatomical and proximate analysis of leaf, root, rhizome of Costus igneus. J. Pharm. Res. 2010;3(4):747-752. ISSN: 0974-6943

Majaw S, Moirangthem J. Qualitative and quantitative analysis of Clerodendron colebrookianum Walp. leaves and Zingiber cassumunar Roxb. rhizomes. Ethnobotanical Leaflets. 2009;5(13):578-589. Available:https://opensiuc.lib.siu.edu/ebl/vol2009/iss5/3

Oforibika GA, Ogoloma JU, Tamunodiepriye E. Potential of Thaumatococcus daniellii in animal nutrition. Nature Sci. 2017;15(10):97-100. DOI:https://doi.org/10.7537/marsnsj151017.13

Abarca-Vargas R, Peña Malacara CF, Petricevich VL. Characterization of chemical compounds with antioxidant and cytotoxic activities in bougainvillea x buttiana holttum and standl, (Var. rose) extracts. Antioxidants. 2016;5(4):45.

DOI:https://doi.org/10.3390/antiox5040045

Humaira F, Khan K, Zia M, Ur-Rehman T, Mirza B, Haq IU. Extraction optimization of medicinally important metabolites from Datura innoxia Mill: An in vitro biological and phytochemical investigation. BMC Complement. Altern. Med. 2015;15:376. DOI:https://doi.org/10.1186/s12906-015-0891-1

Anwar F, Przybylski R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Sci. Pol. Technol. Aliment. 2012;11(3): 293-301.

Chukwuma ER, Obioma N, Christopher OI. The phytochemical composition and some biochemical effects of Nigerian tigernut (Cyperus esculentus L.) tuber. Pak. J. Nutr. 2010;9(7):709-715.

Ayodeji OI, Adeleye O, Dada O, Adeyemi O, Anyasor GN. Phytochemical constituent and antioxidant activity of Thaumatococcus daniellii (Benth.) leaves (food wrapper). Int. J. Pharmacol. Phytochem. Ethnomed. 2016;2:55-61. DOI:https://doi.org/10.18052/www.scipress.com/IJPPE.2.55

Khatri D, Chhetri SBB. Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. BioMed. Res. Inter; 2020. DOI:https://doi.org/10.1155/2020/7296859

Arsenault PR, Vail DR, Wobbe KK, Weathers PJ. Effect of sugars on artemisinin production in Artemisia annua L.: Transcription and metabolite measurements. Molecules. 2010;15(4): 2302-2318.

DOI:https://doi.org/10.3390/molecules15042302

Selvakumar K, Bavithra S, Suganya S, Ahmad Bhat F, Krishnamoorthy G, Arunakaran J. Effect of quercetin on haematobiochemical and histological changes in the liver of polychlorined biphenyls-induced adult male wistar rats. J. biomarkers; 2013.

DOI:https://doi.org/10.1155/2013/960125

Olorunnisola OS, Bradley G, Afolayan AJ. Protective effect of T. violacea rhizome extract against hypercholesterolemia-induced oxidative stress in Wistar rats. Molecules. 2012;17(5):6033-6045.

DOI:https://doi.org/10.3390/molecules17056033

Aba PE, Asuzu IU. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian Journal of Natural Products and Resources. 2018;9(2):85-96.

Available:http://nopr.niscpr.res.in/handle/123456789/44904

Sangeetha KS, Umamaheswari S, Reddy CUM, Kalkura SN. Flavonoids: Therapeutic potential of natural pharmacological agents. Inter. J. Pharm. Sci. Res. 2016; 7(10):3924-3930. DOI:http://doi.org/10.13040/IJPSR.0975-8232.7 (10).3924-30

Ramachandran V, Baojun X. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metabol. 2015; 12:1-20. DOI:https://doi.org/10.1186/s12986-015-0057-7

Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V. Antioxidant and anti-diabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya. J. Food Sci. 2011;76(4):560-567. DOI:https://doi.org/10.1111/j.1750-3841.2011.02116.x

Liu X, Kim J, Li Y, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr. 2005;135(2):165-171. DOI:https://doi.org/10.1093/jn/135.2.165.

Panigrahy SK, Bhatt R, Kumar A. Targeting type II diabetes with plant terpenes: The new and promising antidiabetic therapeutics. Biologia. 2021; 76(1):241-254. DOI:http://doi.org/10.2478/s11756-020-00575-y

Zhao C, Yang C, Wai STC, Zhang YP, Portillo M, Paoli P, et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2019;59(6):830-847.

DOI:https://doi.org/10.1080/10408398.2018.1501658

Holubkova A, Penesova A, Sturdík E, Mosovska S, Mikusova L. Phytochemicals with potential effects in metabolic syndrome prevention and therapy. Acta Chimica Slovaca. 2012;5(2):186-199.

DOI:https://doi.org/10.2478/v10188-012-0029-8

Tang J, Li J, Qi W, Qiu W, Li P, Li B, et al. Inhibition of SREBP by a small molecule, Betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Metabol. 2011; 13:44–56. DOI:https://doi.org/10.1016/j.cmet.2010.12.004

Tofighi Z, Moradi-Afrapoli F, Ebrahimi SN, Goodarzi S, Hadjiakhoondi A, Neuburger M, et al. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J. Nat. Med. 2016; 71(1):272-280. DOI:https://doi.org/10.1007/s11418-016-1 060-7

Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, et al. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin glycosides, active principles of the antidiabetic medicinal plant, Vaccinium vitis-idea. Mol. Nutr. Food. Res. 2010; 54(7):991-1003.

DOI:https://doi.org/10.1002/mnfr.200900218